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ABSTRACT
We prove some refinements of the theorem mentioned in the title.

1. Introduction

Throughout this paper (g;)2, denotes a sequence of strictly increasing
integers. It was shown by W. J. LeVeque [12] that for almost all x with respect
to Lebesgue measure, the sequence ((a; cos a;x));2, is uniformly distributed
modulo one. Here for any real number y, ( y) =y — [ y], where [ y] denotes the
largest integer not greater than y. In this paper, adapting ideas used by R. C.
Baker in [1] and [2] to study sequences like ({@;x))}2,, we prove some
refinements of LeVeque’s theorem. Except in Theorem 1 this is done under
additional assumptions about the rate of growth of the sequence (g;)/~,. Before
we are in a position to give more details however, we need to introduce a piece
of terminology.

DerFiNiTION. By the discrepancy of x, .. ., x, €[0, 1) we mean
1 n
D(xy, ..., X,) =sup - X u0)— .
j=1

Here for any subset B of [0, 1), by x5(x) we mean its characteristic function and
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if it is Lebesgue measurable, by |B| its Lebesgue measure. The above
supremum is taken over all intervals I contained in [0, 1), which are open on
the right and closed on the left.

As is well known a sequence of real numbers ( y;);2, is uniformly distributed
modulo one if and only if

Dy, ..., (y))=0(1)
(see {10], p. 89). To be brief, for each pair of integers m = 0and n = 1, let
D(m,n,x)=D((apn+1C08 @ s1X), .., {AninCOS ApyynX))

and let
D(n,x)=D@, n, x).

Put in the language of discrepancy LeVeque’s theorem becomes
D(n,x)=o0(1) a.e.

Here and henceforth we adopt the convention that we mention the measure we
are dealing with explicitly only if it is not Lebesgue measure.
In Section 2 the following theorem is proved:

THEOREM 1. Foralle >0, D(n,x)=o(n""(log n)***¢) a.e.

The basic method of proof of this theorem is the same as that used by

P. Erdds and J. F. Koksma [4] to prove a result, which as a special case shows
that, given £ >0,

(1) D(a,;x),...,{a,x))=o0(n""(logn)’**%) a.e.

Subsequent to the resuit (1), which was also proved independently by J. W.
S. Cassels [3], attention turned to the exceptional sets themselves. It was
shown, by P. Erdds and S. J. Taylor [5], assuming

Q) a;=0(j"*) for somep = 1,

that if
E ={x : lim D({a, x), . . ., (a,,x))>0}

and if, here and henceforth, dim M denotes the Hausdorff dimension of M,
then
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1
dmE=1-—-.
p

Later refinements were added by R. C. Baker who in 2] studied the set

E,,={x : lim n"D((a,x),...,(a,,x))>0}.

Assuming in addition to (2) that 0 < ¢ <}, he showed that

1-2
dimE, =1 -—=1
p+4q

In Section 3 we adapt these methods to prove Theorem 2.
THEOREM 2. Suppose q €(0, }), for some p = 1 that a; = O(j*) and that
E,= {x : Eil; n‘D(n, x)>0} .
Then
1—4q

dimE, <1 ————
4p +2q +14

In Section 4 we assume for g; (j=1,2,...) that there exist positive
constants C; and C, such that C,j? =a; = C,j’, for some p = 1. Here we
consider subsets B of [0, 1) with the property that

for a disjoint collection of intervals (1,,);—, such that

- o 1B 1Y)

lim =ph>34.
m-o logm

Following Theorem 2 of [1], we are interested in the set

— 1
E(B)={x€[0, 27): lim - |F(B, n, x)| >0}
n—~o n

where

FB,n,x)= i xs({ajcosa;x)) —n|B]|.

Jj=
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In this event consider the following two polynomials:

o - (2E)- 20

and

® = (1=pa-»=(E2)) ey =n-p1 -y

The coefficients of y? in both f,(y) and fy( y) are positive so they each have one
simple root after any negative value of the function. This means that as
fi(2/b) < 0 and f,(1)> 0, fi(y) has a root y, (say) in (2/b, 1) and as

1
1 — <0 and 1)>0,
f2< 4p + %) A
fy) has aroot y, (say)in (1 — 1/(4p + 1), 1). Let y = max(y,, 7,), then we have
the following theorem.

THEOREM 3. dim E(B)=<7y.

2. Lebesgue measure and discrepancy estimates

Before we proceed with the proof of Theorem 1 we need some lemmas. The
first of these is a version of a theorem due to I. S. Gal and J. F. Koksma [8].

LEMMA 4. Let, for each pair of non-negative integers m =0 andn = 1,
F(m,n)=F(m,n, x)

denote a positive Borel measurable function of x on [a, b]. Suppose that
whenever 0 = | < n we have

(6) |F(m,n)| = |F(m, )| + |F(m +1,n—1)].
Suppose further for some 0 > 1, ¢ = 0 and y = 0 that
b
(7) | 1F0n, 1, 5)Pdu() = 00 + myttiog myn),
where u is a positive finite Borel measure on [a, b]. Then for every ¢ >0
F(, n, x)=o(nY*9log n)v+102+ey ;g e,

The original Gél-Koksma theorem was proved with u being Lebesgue
measure. The proof goes through, however, without change for an arbitrary
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positive finite Borel measure. If we apply Lemma 1 to F(m,n,x)=
nD(m, n, x), which clearly satisfies (6), we reduce the proof of Theorem 1 to
obtaining estimates of the type (7) for nD(m,n,x) (n=1,2,...,
m=1,2,...). The task is further reduced by Minkowski’s inequality and
Lemma 5 (which follows and is the well known Erdés-Turan theorem [6]) to
estimating the L*norms of certain exponential sums. Henceforth in this
paper, for a real number x, e(x) will denote 2™,

LEMMA 5. There exists an absolute constant K,>0 such that for all
X, . .., X, €[0, 1) and any positive integer r

To obtain the desired L*-estimate of the exponential sums, we need a
“quasi-orthogonality” inequality essentially due to LeVeque [12] which we
formuiate as Lemma 6.

n

P e(hx;)

j=1

n 51
nD(xl,...,x,,)éK1<—+ > -
roohen

LEMMA 6. For all positive integers h, j and k (j # k) and given interval
[u, v], there exists a positive constant K, = K,(u, v), such that

K;

[a; — ay |2

v

f e(h(a; cos a;x — a, cos a, x))dx| =
u

Our next lemma completes our estimate of the L2-norm of the exponential

sums.

LEMMA 7. For non-negative integers h, m and n = 1 let

m+n
Sp(m,n,x)= Y e(ha;cosa;x).
j=m+1

There exists a positive constant Ky = Ky(u, v) such that
v 172
(f |S,(m, n, x) Izdx) =< K;n**,
u

PROOF.

v v m+n m+n
f |S,,(m,n,x)|2dx=f( ¥ ¥y e(h(a,-cosajx—akcosakx)))dx,

j=m+1 k=m+1
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which is

«(n+2

jrk

fv e(h(a;cos a;x — a, cos akx))dxl) .

Pairing symmetric terms in the above sum and using Lemma 6 this is

<<n+ ¥y la,—akl“"z),

m+l1Sj<k=m+n

which, using the fact that [j — k| = |a; —ax|, is

<(n+ 3 k —j)~ 1/2) n¥2,

m+l<j<k=m+n
as required. 0

We are now in a position to complete the proof of Theorem 1. Firstly,
Minkowski’s inequality and Lemma 7 give us for all positive integers m, n = 1
and r

(Lb(nD(m,n,x))zdx)m<(— 3 h(f \S,(m, 7, x)|2dx> 2).

Choosing r =[n'*], u = a and v= b, and quoting Lemma 7,
b 172
(f (nD(m, n, x))zdx) <n¥(log n).

Lemma 4 now gives, for all ¢ >0,
D(n,x)=o(n"Y(log n)¥**%) a.e.,

as required. O

3. Hausdorff dimension of exceptional sets: Discrepancy
Throughout this section we assume that the sequence (a;)%, satisfies
8) a;,=0(j?) for some p > 1.

We now proceed to the proof of Theorem 2 and assume for the sake of
contradiction that for some 0 < ¢ <}, there exists a v with

1—4q

) dimE,>y>1-——9
4p +2q + 1%
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The following lemma is a slight variation, due to R. C. Baker [1}], of a
theorem due to Frostman [7]. It enables us to formulate our problem in a way
which we can look at, using methods similar to those of the previous section.

LEMMA 8. Let E C|[a, b]. For any v <dim E there exists a finite positive
measure u, supported on a compact set C C E, with dim C = dim E, such that
ifa=x<y=b,then

(10) ulx, yD=(y —x)".

The left hand inequality in (9) together with Lemma 8 imply the existence of
a positive Borel measure x on [a, b] supported on C, (say), a compact subset of
E,, having the same Hausdorff dimension. The idea is to show

(1) D(n,x)=o0(n""u ae.,

because this contradicts u being supported on C,. Showing (11) reduces, via
Lemma 4, to obtaining L?(u) norm estimates for nD(m, n, x). Firstly note that
from Minkowski’s inequality and Lemma 5 we have

b 172
( [ i, n,x)>2du(x))

<2+ p ([ isiomn, ) )

for all non-negative integers m, n = 1 and r = 1. The next two lemmas enable
us to estimate the right hand side of (12).

Together they form “the large sieve” derived by modifying a classical
version due to P. X. Gallagher [9].

(12)

LEMMA 9. For a sequence of continuously differentiable functions
(8 (x))2, defined on [a — 4, b + 4} and all non-negative integers m, n = 1 and
h=1,let

m+n

six)=sp(m,n,x)= Y e(hgi(x)).

j=m+1

Consider u a positive Borel measure on [a, b] with support having Hausdorff
dimension greater than v. Suppose that if a = x <y = b we have u([x, y]) =
(y —x).Thenifd >0,
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b 2

MBS
a

b+d/2 b+6/2 1/2 b+4/2 172
éé""f (s,,(x)lzdx-l—é"(f ls,,(x)lzdx) (f " ls,’,(x)lzdx> )
a 2 a 2 a

'y —al

Proor. For a continuously differentiable function f on [0, 1] it is
easily seen (by integrating by parts the second and third integrals on the right
of (13)) that

(13) f(x)=fo1 fu)du +f0xuf’(u)du +fx' (u — 1) f'(u)du.

This implies that

Ty éfol(lf(u)l + 31w )du.

Hence for a real number « and a continuously differentiable function g(¢)
defined on [« — 6/2, a + 6/2} we have (after a change of variables)

a+d/2 1
g s [ (3 18(0)] +%|g'(t)|)dt.

a—d/

On setting g(¢) = s#(¢) this becomes

a+d/2 (]
Isi(@)| = f (— |sa(e)] + ts;,(t)sh(m)dt.
a—62 \O
Integrating both sides with respect to u this gives
b b a+d/2
[Cis@ids@= [ [T @ si01 + sisio )t duca)

Hence after a justified change in order or integeration we obtain

b b+4/2
[N 1s@ia@= [T 6 st + sioson ([

max(a,t —6/2)

min(h,t +d/2)

dﬂ(a)) dt.

Finally, using the fact that u({x, y]) = (y — x)" and applying Cauchy’s inequa-
lity to |s54(2)s,(2)| we have

b
fa |57(2) | du(a)

b+4/2 b+6/2 12 b+6/2 1/2
<51 f |52 (t) | dt +6v( f IS;f(t)ldt) ( f ls;',(t)lzdt)
a—4a/2 a—al2 a—éa/2

as required. O
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Essentially Lemma 9, in the special case where gi(x)=a;,x(j =1,2,...),1s
stated in [11] where it is ascribed to E. Bombieri. See [2] for a proof, however.
The next lemma converts the previous one into a bound explicit in m, nand A
when we choose gj(x) =g;cosa;x (j=1,2,...).

LEMMA 10. Let u denote a positive Borel measure on [a, b] with support
having Hausdorff dimension greater than v and such that ifa = x <y = b then
u(x, y)) = (y — x)*. Suppose for all non-negative integersm,n =z 1 and h = 1
that (as in Lemma 7)

m+n
Sp(x)=Sy(m,n,x)= 3 e(ha;cosa;x).
j=m+1

Then there exists a constant K, = K,(a, b) > 0 such that

b 172
( ) lsh(m,n,xwdu(x)) = K,((m + n) P =T "3p (-2,

PROOF.
b+4/2
[ Isicorax
a—4a/2
m+n m+n b+4/2 . .
= Yy Y h'a’a} f sin a; x sin a, xe(h(a; cos a;x — a, cos a;x))dx.
j=m+1l k=m+1 a—d/2

Remembering (8) and estimating the integrand on the right trivially we have,
for bounded 4 (by 1 say),

b+4/2
f | S5(x) dx < h*(m + n)**n?.
a—4a/2

We also have from Lemma 7

b+612
f 1S, (x) |2 dx <n¥2.
a-4/2

Lemma 9 now gives, on choosing g;(x) =g;cosa;x(j =1,2,...),

f b |85 (x) Pdu(x) < (6" ~'n¥2 + & (hn"*(m + n)*?)).

Letting & = 4n~"4m + n)~%h "', the lemma is established. O
We are now ready to finish off the proof of Theorem 2. By (9)

(1—4q)

14 v>1— .
(14) 4p +2q +1%
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This is equivalent to

en-5)
=

(15) g <

Hence we can write

(16) w= =qg+p

where p > 0.
Further write
r=[n®],

so that, as w > 0, it follows that r tends to infinity as # does. Now observe that
Lemmas 5 and 10 combine to give

< f b(nD(m, n, x))Zd,u(x)>m

an i ]
<<nl—w + Z _(h(l-—v)/zn(7—v)/8(m +n)p(l—-v))>.
h=1h

Hence if we note that

1 1
2 _(h(l—v)/Z)«nw(l—v)IZ’
k=1 h

we have from (17)
b 172
(f (nD(m, n, x))zdu(x)> <(n'~ + (n + m)PU-Mp-VE+all-w2y

From (16)

7—v 1—v
(18) 1—w—p(l—v)+(—8—->+a)< 3 ),

hence
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fb(nD(m, n, x))2du(x) <né(m + n)?

where

¢=2p(l —v)
and

1—p(l—v)+<7; )

)

2
Now from (16) and (18) 6 + ¢ =2 — 2w so, as p > 0 by (16), we have for all
sufficiently small ¢ >0

0=1+<i;—'v>+(l—v)

D(n,x)=0n"**)=o0(n"Hu a.e.,

as required. 0

4. Exceptional sets to the expected distribution in a class of non-intervals

In this section we assume throughout that there exist positive constants Kj
and K such that for the sequence (a;)2,

(19) Kj? = laj| = Ksj*?  forsomep = I.

Remember we are interested in showing that if

F(B,n,x)= i xs{{a;cos 5;x)) —n|B|

j=1
and
— 1
E(B)={xe[0, 2n) : lim — |F(B, n, x)| >0}
n—wo AN

then dim E(B) = y = max(y,, ,) where y, and y, are simple roots of polyno-
mials fi(¢) and f,(¢) respectively defined by (4) and (5). Remember also that

2 1
(20) ﬁ<5)<0 and f2<1—4p+‘><0.

2

We argue by contradiction assuming that
21) n =dim E(B)> 7.

This means
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f(m>0 and f(n)>0.

By (20), bn — 2 and hence bn — | are positive. This means we can find d
such that

i —my— (1=
(22) A <8 )>d>max(

)

2
Further 2p(1 — t)(bt — 1)~ ! and p(2 — 3t)(bt — 2) ! are decreasing in 7, so as
n>1—1/(4p + 1) by (20), we know

2p(1—1n) p(2— 3n)) < 2p 1

bp—1 ° bn—1/) blep—dh—@dp+1 4

2p(1—1n) p(2—3n)>
m—1 "~ bp—2/"

b

(23) max (

the final inequality of (23) following because b > 34 by (3) and p = 1 by (19).
This means that we can assume

(24) 0<d<i.
If we now write

29 s(n)= Ud I, and t(n)= Ud I

izn i>n

we have
F(B,n,x)=F(s(n),n,x)+ F(t(n), n, x).

Let (m;)%, be the sequence m; = [¢*"]. The only properties of (m;)%, that
interest us are the fact that

(26) lim %+t _q,
and that for any ¢ >0
Q7 él Mt < o,
LEMMA 11. Forany set B C [0, 1) of positive measure

— 1 — 1
{x: lim - |F(B, n, x)| >O}C{x: lim — |F(B, my, x)| >O}.
n

n—ax k= my
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Lemma 11, which hinges on (26) and is proved in [1], together with (25)
implies that

(28) E(ByCcPUQ,
where

— 1
P ={x : lim — | F(s(my), my, x)| >0}
k—w my,

and

Q ={x : lim L | F(t(my), my, x)| >0}>.

k—o mk
We now estimate dim P:

F(s(n),n,x)= 2,, (#{j:1=j=n:(ajcosax)EL}—n|L]),

isn
SO

% | F(s(n), n, %) = n®D(n, x).

Hence, from Theorem 2, after noting (24) we have

1 —44d

(29) dimP=l—-—-—.
4p +1+2d

This means that dim Q = n because the left hand side of (22) can be re-
written as

1—4d
n>1-—-
4p+1+2d
Now select ¢ such that
¢c b
30 lo—<—
(30) n 5<3
and ¢ < n such that
2p(1 — 2-3
d>max{ p( o),p( a)}.
cog—1 (co —2)

This is clearly possible as the right hand inequality of (22) is sharp. Since
dim Q > g, Lemma 8 tells us there exists a positive finite Borel measure 1 on
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[0, 27), supported on a compact subset of @, which has the same Hausdorff
dimension as Q and is such that if 0 < x <y =< 2&, we have

(31) u(lx, yD=(y —x)°.
From (25)

7 1
[ "L R, n, x) 1 dutx)
on

2x |
(32) §fo ;I#{j:1éj;n:(ajcosajx)Et(n)}ld/z(x)

2n
+ [ 1l du)
By (3) and (30)
t) = 3 IL1< 3 i,

i>n i>n
which, for small enough ¢ > 0, means

2n
(33) fo |1(n) | du(x) <n .

We need a similar estimate for the first integral in (32). Now

Lz"l |#{j:1=2j=n:{a;cosax)Et(n)}]du(x)
n

1 n
== X Edzu(Ei,j)a

N j=1 i>n
where
E,;={x:(acosaix)€EI}.
We thus need an estimate for u(E; ;).

LEMMA 12. Given an integer a other than zero and any interval I C [0, 1)
we set

F={x€[0,2r):(acosax)€EI).

Then F =\, J, where the J, are a finite number of disjoint intervals. Further,
if0 =0 =1 then there exists an absolute positive constant K, such that
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Z IJn Ia § K7(|I'a/2a(l-30/2) + |I|aa2—2a)'

ProoF. We can suppose without loss of generality that a is positive,
Suppose for m=1,2,...,2a that A(m, x) are the functions alternatively
monotonically decreasing or increasing (depending on m being odd or even,
respectively) obtained by restricting A(x) = a cos ax to [(m — )n/a, mn/a).
Note that if we assume / =[u,u + |I|)and 0=u =1 — |I| (as we may do,
again without loss of generality) then

a—1

(34) F=CGJ U {x:4m,x)Eu+r,u+r+|I])}.

m=1 r=—gq

From now on, for brevity, let
(35) Fp,={x:4(m,x)E[v,v+ |I])}.

The F,,,.,(m=1,2,...,2a) are intervals because, for each m, A(m, x) is
continuous and monotone in its interval of definition. We have thus expressed
F as finitely many disjoint intervals. For 0 =r =a — 1, by the mean value
theorem there exists y in F,,,, and zin F),,,_ ; such that

lFl,H-u,C(y): [} = ’FI,H»I—]I[IC(Z),

where C(y) refers to the modulus of the derivative of 4(x) evaluated at y.
Now C(x) is monotonically increasing on [0, n/2a) so assuming, as we may
without loss of generality, that F,,,, and F,,,,_,, are disjoint we have
forall0=r=a-1

(36) |Fl,r+u!—5-|Fl,r+l—|I||°

Similarly C(x) is monotonically decreasing on [n/2a,n/a) so, for
—a=r=-1,

(37) |Fl,r+u| §|Fl,r|-

Now considering the symmetries of the graph of A(x) we have, fixing r and u
for all m, that

(38) |Fm,u+r| =|Fl,u+r‘
and, for 1 =r =a,

(39) |Fm,r—|ll|=|Fm,—r|'



Vol. 65, 1989 DISTRIBUTION OF g; cos a;x 111

Hence combining (34), (35), (36), (37), (38) and (39) we have, for F=U,J,,

(40) Y I"s4a X |F,r— I,

r=1

Now we know that sin x = 2x/m on [0, #/2). Hence integrating we obtain
cos x =1 — x¥n on [0, n/2). Rescaling this,

a’x?
acosax=a———
n

on [0, #/2a). The mean value theorem now tells us that

3x2

(41) |Figopl°= er (a —L)E[a — |11, a)Ha =n"?|1|"Pa =",
n
Further A7(x) = — a*4(x), hence 4(x) is concave when positive. Remember
that if £(y) is concave in the interval [x, z] and y €[x, z] then
(h(x) — h(2)(z — y) = (h(y) — h(2))(z — X).

In consequence we have, if we choose A(t) =A(1,t), x =A"'1,r+1— |I]),
y=A"Y1,r)andz=A4"'1,r—|I|)for1 =r=<a-—1,

|For = H11"=1470,r = 1)) =474, )l
SHIPA A r=1ID)—A7 0 r = |I] + 1)),

where A ~!(m, x) is the inverse function of A(m, x) in x for fixed m. Using the
concavity of x?, for 0 = ¢ = 1, we have

(42) ai] AL r+1—[ID—=A L, r—=|I})°S(a— 1)1_,,(1)"_
r=! 2a

The proof of the lemma is now over because (40), (41) and (42) combine to give

2 |Jn |a § K7(|I'a/2a(l—3a/2) + |I'aa2—20)

as required. O

Noting (31) and (19), Lemma 12 immediately gives

1 n
Ed #(E’_,j)<_ Z E (jp(l—3a/2)l'—c¢r/2+l'—cr{ij(l—a))

1 i>n R j=1 i>n

1
n,;

which is
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2p(1 -0)—d(co— 1 1—30/2)—d(co/2— -
(43) <(n p(1—0)—dlco—1) 4 pr(1—30/H—dlco 1))<n e,

for some ¢ > 0. Thus we know by (27), (33) and (43) that

© 2n ]
X — | F(t(my), my, x){du(x) < .
k=1 <0 my

This means

S|
Y — |F(t(my), m, x)| <oo  p-ae.
k=1 My

In particular
F(t(my), my, x)=o(m;)  p-ae.

This contradicts the fact that u is supported on a compact subset of Q with the
same Hausdorff dimension and so we have proved that dim E(B) =<7 as
required. O
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