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ABSTRACT 

We prove some refinements of the theorem mentioned in the title. 

1. Introduction 
Throughout this paper (aj)r=l denotes a sequence of  strictly increasing 

integers. It was shown by W. J. LeVeque [ 12] that for almost all x with respect 

to Lebesgue measure, the sequence ((aj cos ajx))f°_l is uniformly distributed 
modulo one. Here for any real number y, ( y )  = y - [ y], where [ y] denotes the 

largest integer not greater than y. In this paper, adapting ideas used by R. C. 

Baker in [1] and [2] to study sequences like ((ajx))fL1, we prove some 

refinements of  LeVeque's theorem. Except in Theorem 1 this is done under 

additional assumptions about the rate of  growth of  the sequence (ai) ~ _ 1. Before 
we are in a position to give more details however, we need to introduce a piece 

of  terminology. 

DEFINITION. By the discrepancy of  Xl, • • . ,  xn ~ [0, 1) we mean 

D(Xl,...,x~)=sup ~ ~ XI(Xj)--[I[ I. 
j = l  

Here for any subset B of  [0, 1 ), by XB (x) we mean its characteristic function and 
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if it is Lebesgue measurable, by I BI its Lebesgue measure. The above 
supremum is taken over all intervals I contained in [0, 1), which are open on 

the fight and closed on the left. 

As is well known a sequence of real numbers (YJ)T- t is uniformly distributed 

modulo one if and only if 

D ( ( y ~ ) , . . . ,  (Yn))= o(1) 

(see [10], p. 89). To be brief, for each pair of  integers m >= 0 and n >_- 1, let 

D(m,  n, x) = D((am+t cos am+l x ) , . . . ,  (a,,+n cos am+nx)) 

and let 

D(n, x) = D(O, n, x). 

Put in the language of discrepancy LeVeque's theorem becomes 

D ( n , x )  = o(1) a.e. 

Here and henceforth we adopt the convention that we mention the measure we 
are dealing with explicitly only if it is not Lebesgue measure. 

In Section 2 the following theorem is proved: 

THEOREM 1. For all e > O, D(n, x) = o(n-l/4(Iog n) 3/2+e) a.e. 

The basic method of proof of this theorem is the same as that used by 

P. Erd6s and J. F. Koksma [4] to prove a result, which as a special case shows 
that, given e > 0, 

(1) D((a l x )  . . . . .  (a .x) )  = o(n- 'n( log n) 5/2+a) a.e. 

Subsequent to the result (1), which was also proved independently by J. W. 
S. Cassels [3], attention turned to the exceptional sets themselves. It was 
shown, by P. Erd6s and S. J. Taylor [5], assuming 

(2) 

that if 

aj = O( j  p) for some p >_ 1, 

E = {x  " lim ( a , , x ) )>O}  

and if, here and henceforth, dim M denotes the Hausdorff dimension of M, 
then 
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1 
dim E _-< 1 - - . 

P 

Later refinements were added by R. C. Baker who in [2] studied the set 

E q =  { x :  l im . . . . .  ( a . x ) ) > O } .  

Assuming in addition to (2) that 0 < q < ½, he showed that 

1 - 2q 
dim Eq < 1 

P + q  

In Section 3 we adapt these methods to prove Theorem 2. 

THEOREM 2. 

Then 

Suppose q ~(0, ¼),for some p >-_ 1 that aj = O ( j  p) and that 

{ -  } E q =  x "  lim n q D ( n , x ) > O  . 

dim Eq = < 1 
1 - -  4 q  

4p + 2q + ½ 

In Section 4 we assume for aj ( j  = 1, 2 , . . . )  that there exist positive 
constants C~ and C~ such that Cljp  < < = aj = C2jt', for some p >_-- 1. Here we 
consider subsets B of [0, 1) with the property that 

B =  t3 Im 
m ~ l  

for a disjoint collection of  intervals (Im),~ = L such that 

log( I/m I-l) 
(3) lira = b > 34. 

m ~  log m 

Following Theorem 2 of  [ 1 ], we are interested in the set 

where 

E ( B ) =  {x E [0, 2n)" .-~li--m -n l jF (B ,n , x ) [  > 0 }  

F(B,  n , x )  = ~ )~n((ajcosajx))  - n [BI. 
j= l  
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In this event consider the following two polynomials: 

99 

and 

The coefficients of y2 in both f ( y )  and f2(Y) are positive so they each have one 
simple root after any negative value of  the function. This means that as 
f~(2/b) < 0 and f (1 )  > O,f~(y) has a root 71 (say) in (2/b, l) and as 

f 2 ( 1 -  1 ) < 0  and f2(1)>0,  
4p+½ 

f2(Y) has a root 72 (say) in (1 - 1/(4p + ½), 1). Let ~, = max(y,  ~'2), then we have 
the following theorem. 

TrIEOR~M 3. dim E(B) < 7. 

2. Lebesgue measure and discrepancy estimates 

Before we proceed with the proof of Theorem 1 we need some lemmas. The 
first of these is a version of a theorem due to I. S. G~il and J. F. Koksma [8]. 

LEMMA 4. Let , for  each pair o f  non-negative integers m > 0 and n > 1, 

F(m,  n) = F(m,  n, x)  

denote a positive Borel measurable function o f  x on [a, b]. Suppose that 
whenever 0 < l < n we have 

(6) IF(m, n)l < IF(m, l)l + ]F(m +l ,  n - l)l. 

Suppose further for some 0 > 1, 0 > 0 and q/> 0 that 

£ (7) I f ( m ,  n, x)l~dl~(x) = O(n°(n + m)~(log n)~), 

where l~ is a positive finite Borel measure on [a, b ]. Then for every e > 0 

F(O, n, x)  -- o(n(°+~VE(log n) ~'÷ w~+,) # a.e. 

The original Gal-Koksma theorem was proved with /~ being Lebesgue 
measure. The proof  goes through, however, without change for an arbitrary 
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positive finite Borel measure. If we apply Lemma 1 to F(m,  n , x ) =  
nD(m,  n, x), which clearly satisfies (6), we reduce the proof of Theorem 1 to 

obtaining estimates of the type (7) for n D ( m , n , x )  (n = 1 , 2 , . . . ,  

m = l, 2 , . . . ) .  The task is further reduced by Minkowski's inequality and 
Lemma 5 (which follows and is the well known Erd6s-Tur~n theorem [6]) to 

estimating the L2-norms of certain exponential sums. Henceforth in this 
paper, for a real number x,  e(x) will denote e 2"~x. 

LEMMA 5. There exists an absolute constant K1 > 0 such that for all 
xl . . . .  , x, E [0, 1) and any positive integer r 

nD,xl . . . . .  xn,=Kl(n+ 
h = l  

l 

To obtain the desired L2-estimate of the exponential sums, we need a 

"quasi-orthogonality" inequality essentially due to LeVeque [12] which we 

formulate as Lemma 6. 

LEMMA 6. For all positive integers h, j and k (j  ÷ k) and given interval 
[u, v], there exists a positive constant K2 = K2(u, v), such that 

f u  ~ cos akx))dx e(h(aj cos ajx - ak < K2 
[ aj - ak I ''2 

Our next lemma completes our estimate of  the L2-norm of  the exponential 

sums. 

LEMMA 7. For non-negative integers h, m and n > 1 let 

ra + n 

S h ( m , n , x ) =  ~ e(ha icosajx) .  
j - m + l  

There exists a positive constant K3 = K3(u, v) such that 

(~u v )'/2K3n3/4 [Sh(m,n,x)12dx < . 

PROOF. 

I Sh(m, n, x)[2dx = Y~ 
• , , , u  \ j - m + l  k - m + l  

e(h(aj cos ajx - ak COS akX))) dx, 



Vol. 65, 1989 DISTRIBUTION OF aj cos ajx 101 

which is 

). 
Pairing symmetr ic  terms in the above sum and using L e m m a  6 this is 

~.(n + Y. laj--akl-'/2), 
m+l~j<k<m+n 

which, using the fact that [j - k I < l aj - ak I, is 

~.(n + Y~ (k-j)-v2)'~n 3/2, 
m+l<j<k<m+n 

as required. [] 

We are now in a posit ion to complete  the proof of Theorem 1. Firstly, 

Minkowski 's  inequality and Lemma 7 give us for all posit ive integers m, n > 1 

and r 

( f f  (nD(m, n,x))2dx) '/2"~(nr + h~=t ~ ( ~ab lSh(m, n,x)12dx) l/2) . 

Choosing r = [n v4], u = a and v --- b, and quoting Lemma 7, 

(ff(nD(m,n,x))2dx)V2~.n3/4(logn). 

Lemma 4 now gives, for all e > 0, 

D(n, x) = o(n-l/4(log n) 3/2+~) a.e., 

as required. [] 

3. Hausflorff dimension of exceptional sets: Discrepancy 

a Throughout  this section we assume that the sequence ( j)j= 1 satisfies 

(8) aj = O(j p) for s o m e p  > 1. 

We now proceed to the p roof  of  Theorem 2 and assume for the sake of  

contradict ion that for some 0 < q < ¼, there exists a v with 

1 - 4q 
(9) dim Eq > v > 1 

4p  + 2q + ½ 
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The following lemma is a slight variation, due to R. C. Baker [1], of  a 
theorem due to Frostman [7]. It enables us to formulate our problem in a way 

which we can look at, using methods similar to those of  the previous section. 

LEMMA 8. Let E c [a, b]. For any v < d i m E  there exists a finite positive 
measure lt, supported on a compact set C c E, with dim C = dim E, such that 
i f  a <-_ x < y <-<_ b, then 

(lO) u([x,  y]) =< (y  - x)'. 

The left hand inequality in (9) together with Lemma 8 imply the existence of 

a positive Borel measure # on [a, b ] supported on Cq (say), a compact subset of  

Eq, having the same Hausdorff dimension. The idea is to show 

(11) D(n, x) = o(n-q)lt a.e., 

because this contradicts/~ being supported on Cq. Showing (11) reduces, via 
Lemma 4, to obtaining L2(/z) norm estimates for nD(m, n, x). Firstly note that 

from Minkowski's inequality and Lemma 5 we have 

( f ab(nD(m, n,x))2dlz(X)) m 

(12) '(g 
hffil 

for all non-negative integers m, n > 1 and r > 1. The next two lemmas enable 

us to estimate the right hand side of (12). 
Together they form "the large sieve" derived by modifying a classical 

version due to P. X. Gallagher [9]. 

LEMMA 9. For a sequence of  continuously differentiable functions 
(gj(x))p_ 1 defined on [a - ½, b + ½] and all non-negative integers m,  n > 1 and 

h > l, let 
m + n  

sh(x) = Sh(m, n, x) = Y. e(hgj(x)). 
j - - r a +  l 

Consider # a positive Borel measure on [a, b] with support having Hausdorff 
dimension greater than v. Suppose that ira < x < y  < b we have #([x, y]) < 

(y  - x) v. Then i fJ  > O, 
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f [  I Sh(~) (,~) 12d# 

ogv_ l fb+¢~/2 ( b+612 "~ 112/ b+a/2 ,1/2 
[Sh(X)[Zdx + OV fa_6a ~, l ~-~ ,3o-612 [Sh(X)t2dx)  ~ 0 - 6 , 2  Sh(X)12dx)  " 

PROOF. For a continuously differentiable function f on [0, 1] it is 
easily seen (by integrating by pans the second and third integrals on the right 

of (13)) that 

(13) f ( x ) =  L l f ( u ) d u +  foXuf'(u)du+ fxl(u- 1)f'(u)du. 

This implies that 

L 
I 

[f(½)l-5_ (If(u)l + ½1f'(u)l)du. 

Hence for a real number a and a continuously differenfiable function g(t) 
defined on [a - 6/2, a + 6/2] we have (after a change of variables) 

Ig(a)l _-< Ig(t)l + ½1g'(t)l dr. 
,d ~-6/2 

On setting g(t) = s 2 (t) this becomes 

Is~(a)l <= Is~(t)l + IS'h(t)Sh(t)l dt. 
*J a-612 

Integrating both sides with respect to # this gives 

Is2(a) Jd#(cO <= (6-11 s~(t)l + J S'h(t)sh(t)l)dt d#(a). 
J a J a-6/2 

Hence after a justified change in order Or integeration we obtain 
f ab  fb+612  [ l~min(b,t+6,2) \ 

IsZ(a)(d#(a)~ J a-6/2 ( 6 - ' [ s 2 ( t ) {  + IS'h(t)sh(t)[)~Jma,ta,t-am d#(a))dt. 

Finally, using the fact that #([x, y]) = (y  - x) v and applying Cauchy's inequa- 

lity to IS'h(t)sh(t)l we have 

<= I s~(t)ldt + 6" l s~(t)ldt I s;,(t) 12dt} 
,J a -612 \ J a -612 d a -612 

as required. [] 
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Essentially Lemma 9, in the special case where gj(x) = ajx (j  = 1, 2 . . . .  ), is 
stated in [11] where it is ascribed to E. Bombieri. See [2] for a proof, however. 
The next lemma converts the previous one into a bound explicit in m, n and h 
when we choose g/(x) = aj cos ajx (j  = 1, 2 , . . . ) .  

LEMMA 10. Let bt denote a positive Borel measure on [a, b] with support 

having Hausdorff  dimension greater than v and such that i f  a < x < y < b then 
/t([x, y]) < (y - x )  ~. Suppose for all non-negative integers m,  n > 1 and h > 1 

that (as in Lemma 7) 

m + n  

Sh(x) = Sh(m, n, x)  = Y~ e(haj cos ajx). 
j ~ m + l  

Then there exists a constant K4 = K4(a, b) > 0 such that 

b [Sh(m, n,x)12d#(x) _-< K4((m + n)P(~-~n(7-~)~Sh<X-'~/2). 

PROOF. 

I I S (x)12dx 
J a -- 612 

m + n  m + n  f b + 6 1 2  
< 2 2 h2a2a~ s ina j x s inakxe (h (a j cosa j x - -akcosakx ) )dx .  

j = m + l  k = m + l  , d a - 6 / 2  

Remembering (8) and estimating the integrand on the right trivially we have, 

for bounded ~ (by 1 say), 

f a  b+t~12 iS,h(X)12dx ~h2(m + n)4pn 2. 
- 612 

We also have from Lemma 7 
~ a  b + 612 

-a/2 I&(x)12dx ~n3/2" 

Lemma 9 now gives, on choosing gj(x) = aj cos a/x (j = 1, 2 , . . . ) ,  

fab 12d/t(x) ,~ (3v-1n3/2 + 3V(hnT/4(m + n)2p)). I Sh(x) 

Letting t5 = ½n- 1/4(m + n)-2ph-  1, the lemma is established. [] 

We are now ready to finish off the proof o f  Theorem 2. By (9) 

(1 - -  4 q )  
(14) v > 1 

4p + 2q + ½ 
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This is equivalent to 

(15) q <- 

Hence we can write 
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1 _ , , 1  
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. _  v , -  

(16) to = = q + p  

where p > O. 

Further  write 

r = [n~°], 

so that, as to > 0, it follows that  r tends to infinity as n does. Now observe that 

Lemmas  5 and l0 combine to give 

( fab (nD(m, n, x))2dp(x)) ~'2 

(17) ( l'W]ln ) ~, n l-,o + Y, 7(hO-v)/En(7-v)/S(m + n) ptt-')) . 
h= l  

Hence if  we note that 

E (h"-vv2) ~ nO.,-.~2. 
h= l  

we have from (17) 

( f a  \,;2 b (nD(m, n, x))Edll(x)) ~(n ~-'° + (n + m)P°-V)n(7-')ls+'°°-~2). 

From (16) 

hence 
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f f  (nD(m, n, x))2dlt(X) + n) ~ tt°(m 

where 
q~ = 2p(1 - v) 

and 

Now from (16) and (18) 0 + ~ -- 2 - 2o) so, as p > 0 by (16), we have for all 
sufficiently small e > 0 

D(n, x) -- O(n -~÷") = o(n-q)~ a.e., 

as required. [] 

4. Exceptional sets to the expected distribution in a class of non-intervals 

In this section we assume throughout that there exist positive constants/(5 
and K6 such that for the sequence (aj)~_ 

(19) Ksj p < I aj I < K6j p for some p > 1. 

Remember we are interested in showing that if 

F(B, n , x ) =  ~ XB((ajcossjx))-  n IBI 

and 

j - - !  

E(B)= Ix~[O' 2n) " .-o~lim -nl [F(B' n' x)[ > 0 }  

then dim E(B) ~ y = max(y~, 72) where Yl and 72 are simple roots of polyno- 
mials f~(t) and f2(t) respectively defined by (4) and (5). Remember also that 

(20) f ( ~ ) < 0  and f2(1 1 ) < 0 .  
4 p + ½  

We argue by contradiction assuming that 

(21) q = dim E(B) > y. 

This means 
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fffr/) > 0 and f2(~/) > 0. 

By (20), b r / - 2  and hence bq - 1 are positive. This means we can find d 
such that 

(22) ( ~ - ~ )  m a x \ - ~ q - 1  , ~qS_.-~-/. 

Further 2p(1 - t)(bt - 1)- 1 and p(2 - 3t)(bt - 2)-  l are decreasing in t, so as 
r / >  1 - 1/(4p + ~) by (20), we know 

1 (23) m a x (  2p(1 S--q) p ( 2 -  3r/)~< 2p < -  
\ b q - 1  ' - ~ - - I  / b ( 4 p - ½ ) - ( 4 p + ½ )  4 '  

the final inequality of (23) following because b > 3~ by (3) and p >= 1 by (19). 
This means that we can assume 

(24) 

If we now write 

(25) s ( n ) =  U 

0 < d < ~ .  

we have 

Id and t ( n ) =  U Ii 
i<n  d i>n  d 

F(B,  n, x )  = F(s(n) ,  n, x )  + F( t (n) ,  n, x) .  

Let (mj)7_ ~ be the sequence m k =  [e~"2]. The only properties of  (mj)p_l that 
interest us are the fact that 

mk+ 1 
(26) lim - -  = 1, 

k~co mk 

and that for any t > 0 

(27) ~ ink-" < oo. 
k = l  

LEMMA 11. For any set B C [0, 1) o f  positive measure 

Ix  ,im 1, , nx,,>0tc{x ,im 1 
n--® n k - ~  mk 
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Lemma 11, which hinges on (26) and is proved in [1], together with (25) 
implies that 

(28) E(B) C P U Q, 

where 

and 

P = { x  " lim --1 IF(S(mk),mk, X)l >O} 
k - - ~  m k  

Q = { x "  lim - - 1  IF(t(mk),mk, X)l>O}. 
k~oo m k  

We now estimate dim P: 

F(s(n),n,x)= Y~ ( # { j : l < j < n : ( a ~ c o s a j x ) ~ I i } - n l l i l ) ,  
i .,: n a 

SO 

1 
- IF(s(n), n,x)l ~ ndD(n,x). 
n 

Hence, from Theorem 2, after noting (24) we have 

(29) dim P < 1 
1 - -  4 d  

4p + ½ + 2d 

This means that dim Q _-> q because the left hand side of (22) can be re- 
written as 

1 - 4d 
q > l  

4 p + ½ + 2 d  

Now select c such that 

c b 
(30) q-  1 < _ < _ 

2 2 

and a < r/such that 

~ 2 p ( 1 -  a ) p ( 2 - -  3_a~)~ 
d > m a x t  ~aa--1 ' ( c o ' - 2 )  J" 

This is clearly possible as the right hand inequality of (22) is sharp. Since 
dim Q > a, Lemma 8 tells us there exists a positive finite Borel measure/~ on 
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[0, 2n), supported on a compact subset of  Q, which has the same Hausdorff 
dimension as Q and is such that if 0 < x < y _< 2n, we have 

/ t([X, y ] )  ~ ( y  -- x ) ' .  (31) 

From (25) 

(32) 

yo . 1 IF(t(n), n , x ) ld l t ( x )  
n 

f0 
2" 1 

< - I # { j :  1 < j  < n" ( a j cosa jx )Ut (n )} ld l t (x )  
n 

f0 2" + It(n)ld/~(x). 

By (3) and (30) 

i > n  d i > n  4 

which, for small enough e > 0, means 

i - - c ,  

~0 
2~ 

(33) I t(n)ldlt(x) ~. n - ' .  

We need a similar estimate for the first integral in (32). Now 

f o  2~1 ] # { j "  1 < j  < n" (a jcosa jx)Et (n)}[d l t (X)  
n 

= L y u(e, ,), 
n j = l  i > n  d 

where 

E,,j = (x:  (aj cos ajx) El i ) .  

We thus need an estimate for/t(Ei.j). 

LEMMA 12. Given an integer a other than zero and any interval I c [0, 1) 
we set 

F = {xE[0,  2n) :  (a cos ax)  EI}.  

Then F = U ,  J, where the J. are a finite number o f  disjoint intervals. Further, 
ifO < a < 1 then there exists an absolute positive constant 1(7 such that 
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Y. I J ,  I" ~/£7(11 I~/Za ~1-3~/~) + II I'a2-2~). 
n 

PROOF. We can suppose without  loss of  generality that a is positive. 

Suppose for m = 1, 2 , . . . ,  2a that A(m, x) are the functions alternatively 

monotonical ly decreasing or increasing (depending on m being odd or even, 

respectively) obtained by restricting A (x) = a cos ax to [(m - l )n /a ,  mrc/a). 
Note  that if  we assume I = [u, u + II I ) and 0 < u < 1 - II I (as we may do, 

again without  loss o f  generality) then 

2 a  a - 1 

(34) F =  U U 
m - I  r - - a  

{ x : A ( m , x ) ~ [ u  + r ,u + r + I11)}. 

From now on, for brevity, let 

(35) F,.,~= { x : a ( m , x ) E [ v ,  v+ III)}- 

The F,,.,+r (m = 1, 2 . . . . .  2a)  are intervals because, for each m, A(m, x) is 

cont inuous and monotone  in its interval o f  definition. We have thus expressed 

F as finitely many disjoint intervals. For  0 _-< r < a - 1, by the mean value 

theorem there exists y in Fl,,+u and z in Fl.,+~-I~l such that 

IFI.,+,IC(y)= III = 1F~,r+l-ltllC(z), 

where C(y) refers to the modulus  of  the derivative of  A(x)  evaluated at y.  

Now C(x) is monotonical ly increasing on [0, lr/2a) so assuming, as we may 

without  loss of  generality, that F~,,+. and Fl,r+~-ttl are disjoint we have 

for all 0 < r < a - 1 

(36) IFl,r+. I----< IFl , ,+l- ln I. 

Similarly C(x) is monotonical ly decreasing on [n/2a, n/a) so, for 

-a<__r<=-l ,  

(37) Ifl,r+~ ] < IFl,, I. 

N o w  considering the symmetr ies  of  the graph o f  A (x) we have, fixing r and u 

for all m,  that 

(38) IFm,u+,l = IF~,u+,l 

and, for 1 < r < a ,  

(39) IF,,,,-i,iI = I Fm.-r I. 
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Hence combining (34), (35), (36), (37), (38) and (39) we have, for F = k3. J . ,  

(40) Y~IJ.I" < 4 a  ~ I Fl, r - I I I I  ~. 
n r = l  

Now we know that sin x > 2x/zc on [0, zc/2). Hence integrating we obtain 
cos x _-< 1 - x2/n on [0, ~/2). Rescaling this, 

a3x 2 
a cos ax < a - - -  = 

7~ 

on [0, zt/2a). The mean value theorem now tells us that 

{ ( a ~  2 ) } *  (41) IFl,a-t111 °<= x"  a ~ [ a - - I l l , a )  =~*/21II°/2a-3a/2 

Further A "(x) = -- aZA(x), hence A (x) is concave when positive. Remember  
that if h ( y )  is concave in the interval [x, z] and y ~ [x, z] then 

(h(x)  - h(z))(z  - y)  < (h (y )  - h(z))(z  - x) .  

In consequence we have, if we choose h(t)  =A(1 ,  t), x = A - I ( 1 ,  r + 1 - I l l) ,  
y =A-~(1,  r) and z =A-~(1,  r -  III)  for 1 < r < a  - 1, 

I f ~ , r - I I I  I ° =  I A - ~ ( 1 , r - I I I ) - A - I ( 1 ,  r)l ~ 

_< III~(A-~(1, r -  I I [ ) - A - ' ( 1 ,  r -  III + 1))% 

where A - ~(m, x )  is the inverse function ofA (m,  x )  in x for fixed m. Using the 
concavity of x ~, for 0 _< tr < 1, we have 

. ,  

(42) ~, ( A - ~ ( l , r  + l - -  I I I ) - - A - ~ ( 1 , r - -  III))° < ( a - - 1 )  ~-~ ~ ~. 
r = ~ \2a /  

The proof  of the lemma is now over because (40), (41) and (42) combine to give 

Y~ IJ. I* < KT(III  a/2aO-3o/2) + I I I  aa2-2a) 
n 

as required. [] 

Noting (31) and (19), Lemma 12 immediately gives 

1 ~ ~ #(Ei,j)~l ~ X (jp(I--3a/2)i--ca/2-~-i--c~j 2p(I-~)) 
n j f f i l  i>n d n j = l  i>n d 

which is 
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(43) ,¢ (n2VO -a)-d(ca- 1) q_ nV(~-3a/2)-d(ca/2-l)) <~ n -% 

for some e > 0. Thus we know by (27), (33) and (43) that 

f 2 . 1  ]F(t(mk), mk, X)[dl2(X) < 0O. 
k - 1  ,dO mk 

This means 

In particular 

1 I F(t(mk), mk, X)I < oo 
k ~ l  mk 

/l-a.e. 

F(t(mk), ink, X) = O(mk) /z-a.e. 

This contradicts the fact that/ t  is supported on a compact subset of  Q with the 
same Hausdortf dimension and so we have proved that dim E(B)< ? as 

required. [] 
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